翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

line shaft : ウィキペディア英語版
line shaft

A line shaft is a power driven rotating shaft for power transmission that was used extensively from the Industrial Revolution until the early 20th century. Prior to the widespread use of electric motors small enough to be connected directly to each piece of machinery, line shafting was used to distribute power from a large central power source to machinery throughout a workshop or an industrial complex. The central power source could be a water wheel, turbine, windmill, animal power or a steam engine. Power was distributed from the shaft to the machinery by a system of belts, pulleys and gears known as ''millwork''.〔
==Operation==

A typical line shaft would be suspended from the ceiling of one area and would run the length of that area. One pulley on the shaft would receive the power from the a parent line shaft elsewhere in the building. The other pulleys would supply power to pulleys on each individual machine or to subsequent line shafts. In manufacturing where there were a large number of machines performing the same tasks, the design of the system was fairly regular and repeated. In other applications such as machine and wood shops where there was a variety of machines with different orientations and power requirements, the system would appear erratic and inconsistent with many different shafting directions and pulley sizes. Shafts were usually horizontal and overhead but occasionally were vertical and could be underground. Shafts were usually rigid steel, made up of several parts bolted together at flanges. The shafts were suspended by hangers with bearings at certain intervals of length. The distance depended on the weight of the shaft and the number of pulleys. The shafts had to be kept aligned or the stress would overheat the bearings and could break the shaft. The bearings were usually friction type and had to be kept lubricated. Pulley lubricator employees were required in order to ensure that the bearings did not freeze or malfunction.
In the earliest applications power was transmitted between pulleys using loops of rope on grooved pulleys. This method is extremely rare today, dating mostly from the 18th century. Flat belts on flat pulleys or drums were the most common method during the 19th and early 20th centuries. The belts were generally tanned leather or cotton duck impregnated with rubber. Leather belts were fastened in loops with rawhide or wire lacing, lap joints and glue, or one of several types of steel fasteners. Cotton duck belts usually used metal fasteners or were melted together with heat. The leather belts were run with the hair side against the pulleys for best traction. The belts needed periodic cleaning and conditioning to keep them in good condition. Belts were often twisted 180 degrees per leg and reversed on the receiving pulley to cause the second shaft to rotate in the opposite direction.
Pulleys were constructed of wood, iron, steel or a combination thereof. Varying sizes of pulleys were used in conjunction to change the speed of rotation. For example a 40" pulley at 100 rpm would turn a 20" pulley at 200 rpm. Pulleys solidly attached ("fast") to the shaft could be combined with adjacent pulleys that turned freely ("loose") on the shaft (idlers). In this configuration the belt could be maneuvered onto the idler to stop power transmission or onto the solid pulley to convey the power. This arrangement was often used near machines to provide a means of shutting the machine off when not in use. Usually at the last belt feeding power to a machine, a pair of stepped pulleys could be used to give a variety of speed settings for the machine.
Occasionally gears were used between shafts to change speed rather than belts and different sized pulleys, but this seems to have been relatively uncommon.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「line shaft」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.